Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/63685
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTeerapong Suksumranen_US
dc.date.accessioned2019-03-18T02:24:00Z-
dc.date.available2019-03-18T02:24:00Z-
dc.date.issued2019-01-01en_US
dc.identifier.issn15324125en_US
dc.identifier.issn00927872en_US
dc.identifier.other2-s2.0-85062370290en_US
dc.identifier.other10.1080/00927872.2018.1530251en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85062370290&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/63685-
dc.description.abstract© 2019, © 2019 Taylor & Francis Group, LLC. In the present article, we examine linear representations of finite gyrogroups, following their group-counterparts. In particular, we prove Maschke’s theorem for gyrogroups, along with its converse. This suggests studying the left regular action of a gyrogroup (G,⊕) on the function space (Formula presented.) in a natural way, where L(G) is the space of all functions from G to a field.en_US
dc.subjectMathematicsen_US
dc.titleExtension of Maschke’s theoremen_US
dc.typeJournalen_US
article.title.sourcetitleCommunications in Algebraen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.