Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/63679
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHai Q. Dinhen_US
dc.contributor.authorXiaoqiang Wangen_US
dc.contributor.authorHongwei Liuen_US
dc.contributor.authorSongsak Sriboonchittaen_US
dc.date.accessioned2019-03-18T02:23:54Z-
dc.date.available2019-03-18T02:23:54Z-
dc.date.issued2019-05-01en_US
dc.identifier.issn0012365Xen_US
dc.identifier.other2-s2.0-85061557336en_US
dc.identifier.other10.1016/j.disc.2019.01.023en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85061557336&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/63679-
dc.description.abstract© 2019 Elsevier B.V. Let p be an odd prime, s, m be positive integers, γ,λ be nonzero elements of the finite field F p m such that γ p s =λ. In this paper, we show that, for any positive integer η, the Hamming distances of all repeated-root λ-constacyclic codes of length ηp s can be determined by those of certain simple-root γ-constacyclic codes of length η. Using this result, Hamming distances of all constacyclic codes of length 4p s are obtained. As an application, we identify all MDS λ-constacyclic codes of length 4p s .en_US
dc.subjectMathematicsen_US
dc.titleOn the Hamming distances of repeated-root constacyclic codes of length 4p <sup>s</sup>en_US
dc.typeJournalen_US
article.title.sourcetitleDiscrete Mathematicsen_US
article.volume342en_US
article.stream.affiliationsTon-Duc-Thang Universityen_US
article.stream.affiliationsHuazhong Normal Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.