Please use this identifier to cite or link to this item:
Title: Optimising chitosan–pectin hydrogel beads containing combined garlic and holy basil essential oils and their application as antimicrobial inhibitor
Authors: Kittikoon Torpol
Sujinda Sriwattana
Jurmkwan Sangsuwan
Pairote Wiriyacharee
Witoon Prinyawiwatkul
Keywords: Agricultural and Biological Sciences
Issue Date: 1-Jan-2019
Abstract: © 2019 Institute of Food Science and Technology Chitosan–pectin hydrogel beads that trap and release the maximal amount of combined garlic and holy basil essential oils to inhibit food microorganisms were developed based on the central composite design, with chitosan (0.2–0.7% w/v), pectin (3.5–5.5% w/v) and calcium chloride (CaCl2) (5.0–20.0% w/v) contents. The optimal bead consisted of 0.3–0.6% w/v chitosan, 3.9–5.1% w/v pectin and 8.0–17.0% w/v CaCl2, which had a high encapsulation efficiency (62.16–79.06%) and high cumulative release efficiency (31.55–37.81%) after storage at 5 °C for 15 days. Optimal hydrogel beads were packed into a cellulose bag to evaluate antimicrobial activity by the disc volatilisation method. The beads inhibited Bacillus cereus, Clostridium perfringens, Escherichia coli, Pseudomonas fluorescens, Listeria monocytogenes and Staphylococcus aureus but did not affect Lactobacillus plantarum and Salmonella Typhimurium. The oil-containing beads could potentially be applied in food packaging to inhibit the mentioned microorganisms.
ISSN: 13652621
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.

Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.