Please use this identifier to cite or link to this item:
Title: Computational screening of chalcones acting against topoisomerase IIα and their cytotoxicity towards cancer cell lines
Authors: Kanyani Sangpheak
Monika Mueller
Nitchakan Darai
Peter Wolschann
Chonticha Suwattanasophon
Ritbey Ruga
Warinthon Chavasiri
Supaporn Seetaha
Kiattawee Choowongkomon
Nawee Kungwan
Chompoonut Rungnim
Thanyada Rungrotmongkol
Keywords: Pharmacology, Toxicology and Pharmaceutics
Issue Date: 1-Jan-2019
Abstract: © 2018, © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. Targeted cancer therapy has become one of the high potential cancer treatments. Human topoisomerase II (hTopoII), which catalyzes the cleavage and rejoining of double-stranded DNA, is an important molecular target for the development of novel cancer therapeutics. In order to diversify the pharmacological activity of chalcones and to extend the scaffold of topoisomerase inhibitors, a series of chalcones was screened against hTopoIIα by computational techniques, and subsequently tested for their in vitro cytotoxicity. From the experimental IC50 values, chalcone 3d showed a high cytotoxicity with IC50 values of 10.8, 3.2 and 21.1 µM against the HT-1376, HeLa and MCF-7 cancer-derived cell lines, respectively, and also exhibited an inhibitory activity against hTopoIIα-ATPase that was better than the known inhibitor, salvicine. The observed ligand–protein interactions from a molecular dynamics study affirmed that 3d strongly interacts with the ATP-binding pocket residues. Altogether, the newly synthesised chalcone 3d has a high potential to serve as a lead compound for topoisomerase inhibitors.
ISSN: 14756374
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.

Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.