Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/62913
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPongsiri Kuresangsaien_US
dc.contributor.authorMatthew O.T. Coleen_US
dc.date.accessioned2018-12-14T03:40:51Z-
dc.date.available2018-12-14T03:40:51Z-
dc.date.issued2019-02-01en_US
dc.identifier.issn0094114Xen_US
dc.identifier.other2-s2.0-85055485562en_US
dc.identifier.other10.1016/j.mechmachtheory.2018.10.006en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85055485562&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/62913-
dc.description.abstract© 2018 Elsevier Ltd Kinematic design optimization of compliant mechanisms requires accurate yet efficient mathematical models of elastic behavior. A method to predict large-deflection behavior of flexure joint elements using polynomial curvature functions is described in this paper. The method is generalized and extended for kinematic prediction and design optimization of planar multi-flexure mechanisms. It is shown that the kinostatic configuration problem may be solved efficiently and accurately via an energy-based constrained relaxation approach. A class of design optimization problems is further considered where prescribed link positions must be achieved within an overall motion path. Case studies are introduced and theoretical solutions presented. The first of these involves a double Hoeken's linkage, designed to achieve rectilinear translation of an end link. The second involves an X-Y motion stage mechanism, designed to achieve translational motion of a platform over a targeted workspace while minimizing its rotation. Experimental results involving a realization of the optimized X-Y motion stage design are reported and compared with numerical predictions. To complete the paper, a sensitivity analysis for assembly errors is undertaken via a Monte Carlo simulation. This gives further insight on expected mechanism performance and confirms the efficiency and practical utility of the proposed methods.en_US
dc.subjectChemical Engineeringen_US
dc.subjectComputer Scienceen_US
dc.subjectEngineeringen_US
dc.titleKinematic modeling and design optimization of flexure-jointed planar mechanisms using polynomial bases for flexure curvatureen_US
dc.typeJournalen_US
article.title.sourcetitleMechanism and Machine Theoryen_US
article.volume132en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.