Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/62772
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Unyamanee Seanprom | en_US |
dc.contributor.author | Attapol Kaewkhao | en_US |
dc.contributor.author | Natee Tongsiri | en_US |
dc.contributor.author | Atichart Kettapun | en_US |
dc.date.accessioned | 2018-11-29T07:48:12Z | - |
dc.date.available | 2018-11-29T07:48:12Z | - |
dc.date.issued | 2018-08-01 | en_US |
dc.identifier.issn | 16860209 | en_US |
dc.identifier.other | 2-s2.0-85052870353 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85052870353&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/62772 | - |
dc.description.abstract | © 2018 by the Mathematical Association of Thailand. All rights reserved. In this paper we use a concept of group action on subgroup of S16to find the number of all pandiagonal Lanna magic squares generated from a set of Myanmar numbers found in a 4x4 non-normal Lanna magic square, called Buddha Khunnung 56 Yantra. Those numbers are 1-15 with repeated 8. This magic square is a talisman from Lanna Kingdom, an ancient kingdom of Thailand. The study found that there were 384 pandiagonal Lanna magic squares. | en_US |
dc.subject | Mathematics | en_US |
dc.title | A group action on pandiagonal lanna magic squares | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Thai Journal of Mathematics | en_US |
article.volume | 16 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.