Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/62769
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChollawat Pookpienlerten_US
dc.contributor.authorPreeyanuch Honyamen_US
dc.contributor.authorJintana Sanwongen_US
dc.date.accessioned2018-11-29T07:48:11Z-
dc.date.available2018-11-29T07:48:11Z-
dc.date.issued2018-08-04en_US
dc.identifier.issn22277390en_US
dc.identifier.other2-s2.0-85052812682en_US
dc.identifier.other10.3390/math6080134en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85052812682&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/62769-
dc.description.abstract© 2018 by the authors. Let T(X,Y) be the semigroup consisting of all total transformations from X into a fixed nonempty subset Y of X. For an equivalence relation ρ on X, let ρ be the restriction of ρ on Y, R a cross-section of Y/ρ and define T(X,Y, ρ, R) to be the set of all total transformations α from X into Y such that a preserves both r (if pa, bq ∈ ρ, then (aα, bα) ∈ ρ) and R (if r P R, then rα ∈ R). T(X,Y, ρ, R) is then a subsemigroup of T(X,Y). In this paper, we give descriptions of Green's relations on T(X,Y, ρ, R), and these results extend the results on T(X,Y) and TpX, ρ, Rq when taking ρ to be the identity relation and Y = X, respectively.en_US
dc.subjectMathematicsen_US
dc.titleGreen's relations on a semigroup of transformations with restricted range that preserves an equivalence relation and a cross-sectionen_US
dc.typeJournalen_US
article.title.sourcetitleMathematicsen_US
article.volume6en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.