Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/61973
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKamsing Nonlaoponen_US
dc.contributor.authorAmnuay Kananthaien_US
dc.date.accessioned2018-09-11T09:03:09Z-
dc.date.available2018-09-11T09:03:09Z-
dc.date.issued2006-03-01en_US
dc.identifier.issn15131874en_US
dc.identifier.other2-s2.0-33645774832en_US
dc.identifier.other10.2306/scienceasia1513-1874.2006.32.021en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33645774832&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/61973-
dc.description.abstractIn this paper, we study the equation ∂/∂t-u(x,t) = c2k u(x,t) with the initial condition u(x, 0) = f(x) for x ∈ ℝn - the n-dimensional Euclidean space. The operator k is named the ultra-hyperbolic operator iterated k -times, defined by k=(∂2/∂x12+ ⋯ + ∂2/∂xp2-∂2/ ∂xp+12-⋯-∂2/∂x p+q2 p + q = n is the dimension of the Euclidean space ℝn, u(x,t) is an unknown function for (x,t) = (x 1,...,xn,t) ∈ ℝn × (0,∞), f(x) is a positive integer, and c is a positive constant. We obtain the solution of such equation which is related to the spectrum and the kernel which is so called the generalized ultra-hyperbolic heat kernel. Moreover, such the generalized ultra-hyperbolic heat kernel has interesting properties and also related to the the kernel of an extension of the heat equation.en_US
dc.subjectMultidisciplinaryen_US
dc.titleOn the generalized ultra-hyperbolic heat kernel related to the spectrumen_US
dc.typeJournalen_US
article.title.sourcetitleScienceAsiaen_US
article.volume32en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.