Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/61776
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSompong Dhompongsaen_US
dc.contributor.authorAnchalee Kaewcharoenen_US
dc.contributor.authorAttapol Kaewkhaoen_US
dc.date.accessioned2018-09-11T08:58:59Z-
dc.date.available2018-09-11T08:58:59Z-
dc.date.issued2006-03-01en_US
dc.identifier.issn0362546Xen_US
dc.identifier.other2-s2.0-30144440325en_US
dc.identifier.other10.1016/j.na.2005.05.051en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=30144440325&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/61776-
dc.description.abstractLet E be a nonempty bounded closed convex separable subset of a reflexive Banach space X which satisfies the Domínguez-Lorenzo condition, i.e., an inequality concerning the asymptotic radius of a sequence and the Chebyshev radius of its asymptotic center. We prove that a multivalued nonexpansive mapping T:E→2X which is compact convex valued and such that T(E) is bounded and satisfies an inwardness condition has a fixed point. As a consequence, we obtain a fixed-point theorem for multivalued nonexpansive mappings in uniformly nonsquare Banach spaces which satisfy the property WORTH, extending a known result for the case of nonexpansive single-valued mappings. We also prove a common fixed point theorem for two nonexpansive commuting mappings t:E→E and T:E→KC(E) (where KC(E) denotes the class of all compact convex subsets of E) when X is a uniformly convex Banach space. © 2005 Elsevier Ltd. All rights reserved.en_US
dc.subjectMathematicsen_US
dc.titleThe Domínguez-Lorenzo condition and multivalued nonexpansive mappingsen_US
dc.typeJournalen_US
article.title.sourcetitleNonlinear Analysis, Theory, Methods and Applicationsen_US
article.volume64en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.