Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/61769
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJintana Sanwongen_US
dc.date.accessioned2018-09-11T08:58:53Z-
dc.date.available2018-09-11T08:58:53Z-
dc.date.issued2006-12-01en_US
dc.identifier.issn15324125en_US
dc.identifier.issn00927872en_US
dc.identifier.other2-s2.0-33845773320en_US
dc.identifier.other10.1080/00927870600936740en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33845773320&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/61769-
dc.description.abstractIn this article, we prove that for any multiplication module M, the forcing linearity number of M, fln(M), belongs to {0,1,2}, and if M is finitely generated whose annihilator is contained in only finitely many maximal ideals, then fln(M) = 0. Also, the forcing linearity numbers of multiplication modules over some special rings are given. We also show that every multiplication module is semi-endomorphal. Copyright © Taylor & Francis Group, LLC.en_US
dc.subjectMathematicsen_US
dc.titleForcing linearity numbers for multiplication modulesen_US
dc.typeJournalen_US
article.title.sourcetitleCommunications in Algebraen_US
article.volume34en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.