Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/61769
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jintana Sanwong | en_US |
dc.date.accessioned | 2018-09-11T08:58:53Z | - |
dc.date.available | 2018-09-11T08:58:53Z | - |
dc.date.issued | 2006-12-01 | en_US |
dc.identifier.issn | 15324125 | en_US |
dc.identifier.issn | 00927872 | en_US |
dc.identifier.other | 2-s2.0-33845773320 | en_US |
dc.identifier.other | 10.1080/00927870600936740 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33845773320&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/61769 | - |
dc.description.abstract | In this article, we prove that for any multiplication module M, the forcing linearity number of M, fln(M), belongs to {0,1,2}, and if M is finitely generated whose annihilator is contained in only finitely many maximal ideals, then fln(M) = 0. Also, the forcing linearity numbers of multiplication modules over some special rings are given. We also show that every multiplication module is semi-endomorphal. Copyright © Taylor & Francis Group, LLC. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Forcing linearity numbers for multiplication modules | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Communications in Algebra | en_US |
article.volume | 34 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.