Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/61225
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJintana Sanwongen_US
dc.contributor.authorR. P. Sullivanen_US
dc.date.accessioned2018-09-10T04:06:58Z-
dc.date.available2018-09-10T04:06:58Z-
dc.date.issued2007-01-01en_US
dc.identifier.issn10053867en_US
dc.identifier.other2-s2.0-33947654518en_US
dc.identifier.other10.1142/S1005386707000259en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33947654518&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/61225-
dc.description.abstractIn 1976 Howie proved that a finite congruence-free semigroup is a simple group if it has at least three elements but no zero element. Infinite congruence-free semigroups are far more complicated to describe, but some have been constructed using semigroups of transformations (for example, by Howie in 1981 and by Marques in 1983). Here, for certain semigroups S of numbers and of transformations, we determine all congruences ρ on S such that S/p is congruence-free, that is, we describe all maximal congruences on such semigroups S. © 2007 AMSS CAS & SUZHOU UNIV.en_US
dc.subjectMathematicsen_US
dc.titleMaximal congruences on some semigroupsen_US
dc.typeJournalen_US
article.title.sourcetitleAlgebra Colloquiumen_US
article.volume14en_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsUniversity of Western Australiaen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.