Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/61223
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJessada Tariboonen_US
dc.contributor.authorAmnuay Kananthaien_US
dc.date.accessioned2018-09-10T04:06:57Z-
dc.date.available2018-09-10T04:06:57Z-
dc.date.issued2007-01-01en_US
dc.identifier.issn14768291en_US
dc.identifier.issn10652469en_US
dc.identifier.other2-s2.0-33947511621en_US
dc.identifier.other10.1080/10652460601089788en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33947511621&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/61223-
dc.description.abstractIn this article, we study the Green function of the operator (⊕+m2)k which is iterated k-times and is defined by equation presented where m is a positive real number and p+q=n is the dimension of the n-dimensional Euclidean space ℝn, x=(x1, x2,.., xn)ε ℝn and k is a nonnegative integer. At first, we study the elementary solution or Green function of the operator (⊕+m2)k. Moreover, the operator (⊕+m2)k can be related to the ultra-hyperbolic Klein-Gordon operator (□+m2)k, the Helmholtz operator (□+m2)k and the diamond operator of the form (δ+m2)k, and also we obtain the elementary solutions of such operators. We also apply such a Green function to obtain the solution of the equation (⊕+m2)kU(x)=f(x), where f is a generalized function and U(x) is an unknown function for x ε ℝn.en_US
dc.subjectMathematicsen_US
dc.titleOn the Green function of the (⊕+m2)k operatoren_US
dc.typeJournalen_US
article.title.sourcetitleIntegral Transforms and Special Functionsen_US
article.volume18en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.