Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/61216
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSita Charkriten_US
dc.contributor.authorAmnuay Kananthaien_US
dc.date.accessioned2018-09-10T04:06:50Z-
dc.date.available2018-09-10T04:06:50Z-
dc.date.issued2007-05-15en_US
dc.identifier.issn10960813en_US
dc.identifier.issn0022247Xen_US
dc.identifier.other2-s2.0-33846625267en_US
dc.identifier.other10.1016/j.jmaa.2006.06.092en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33846625267&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/61216-
dc.description.abstractIn this paper, we are concerned with the existence of solutions for the higher order boundary value problem in the formu(2 m + 2)(x) = f (x, u (x), u″(x), ..., u(2 m)(x)), x ∈ (0, 1),u(2 i)(0) = u(2 i)(1) = 0, 0 ≤ i ≤ m, where m is a given positive integer and f : [0, 1] × Rm + 1→ R is continuous. We introduce a new maximum principle of higher order equations and develop a monotone method in the presence of lower and upper solutions for this problem. © 2006 Elsevier Inc. All rights reserved.en_US
dc.subjectMathematicsen_US
dc.titleExistence of solutions for some higher order boundary value problemsen_US
dc.typeJournalen_US
article.title.sourcetitleJournal of Mathematical Analysis and Applicationsen_US
article.volume329en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.