Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/61216
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sita Charkrit | en_US |
dc.contributor.author | Amnuay Kananthai | en_US |
dc.date.accessioned | 2018-09-10T04:06:50Z | - |
dc.date.available | 2018-09-10T04:06:50Z | - |
dc.date.issued | 2007-05-15 | en_US |
dc.identifier.issn | 10960813 | en_US |
dc.identifier.issn | 0022247X | en_US |
dc.identifier.other | 2-s2.0-33846625267 | en_US |
dc.identifier.other | 10.1016/j.jmaa.2006.06.092 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33846625267&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/61216 | - |
dc.description.abstract | In this paper, we are concerned with the existence of solutions for the higher order boundary value problem in the formu(2 m + 2)(x) = f (x, u (x), u″(x), ..., u(2 m)(x)), x ∈ (0, 1),u(2 i)(0) = u(2 i)(1) = 0, 0 ≤ i ≤ m, where m is a given positive integer and f : [0, 1] × Rm + 1→ R is continuous. We introduce a new maximum principle of higher order equations and develop a monotone method in the presence of lower and upper solutions for this problem. © 2006 Elsevier Inc. All rights reserved. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Existence of solutions for some higher order boundary value problems | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Journal of Mathematical Analysis and Applications | en_US |
article.volume | 329 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.