Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/60987
Full metadata record
DC FieldValueLanguage
dc.contributor.authorW. A. Kirken_US
dc.contributor.authorB. Panyanaken_US
dc.date.accessioned2018-09-10T04:02:28Z-
dc.date.available2018-09-10T04:02:28Z-
dc.date.issued2007-05-01en_US
dc.identifier.issn15322467en_US
dc.identifier.issn01630563en_US
dc.identifier.other2-s2.0-34249098113en_US
dc.identifier.other10.1080/01630560701348517en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=34249098113&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/60987-
dc.description.abstractAn ℝ-tree is a geodesic space for which there is a unique arc joining any two of its points, and this arc is a metric segment. We give a constructive proof of the following "best approximation" theorem in such spaces. Suppose X is a closed convex and geodesically bounded subset of an ℝ-tree H, and suppose T:X2H is a multivalued upper semicontinuous mapping whose values are nonempty closed convex subsets of X. Then there exists a point x0X such that [image omitted] We also give a topological version of the above theorem in a more abstract setting, and we prove a KKM theorem for geodesically bounded ℝ-trees.en_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titleBest approximation in ℝ-treesen_US
dc.typeJournalen_US
article.title.sourcetitleNumerical Functional Analysis and Optimizationen_US
article.volume28en_US
article.stream.affiliationsUniversity of Iowaen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.