Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/60963
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jinda Sirita | en_US |
dc.contributor.author | Sukon Phanichphant | en_US |
dc.contributor.author | Frederic C. Meunier | en_US |
dc.date.accessioned | 2018-09-10T04:02:05Z | - |
dc.date.available | 2018-09-10T04:02:05Z | - |
dc.date.issued | 2007-05-15 | en_US |
dc.identifier.issn | 00032700 | en_US |
dc.identifier.other | 2-s2.0-34249020155 | en_US |
dc.identifier.other | 10.1021/ac0702802 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=34249020155&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/60963 | - |
dc.description.abstract | Fully quantitative analyses of DRIFTS data are required when the surface concentrations and the specific rate constants of reaction (or desorption) of adsorbates are needed to validate microkinetic models. The relationship between the surface coverage of adsorbates and various functions derived from the signal collected by DRIFTS is discussed here. The Kubelka-Munk and pseudoabsorbance (noted here as absorbance, for the sake of brevity) transformations were considered, since those are the most commonly used functions when data collected by DRIFTS are reported. Theoretical calculations and experimental evidence based on the study of CO adsorption on Pt/SiO2 and formate species adsorbed on Pt/CeO2 showed that the absorbance (i.e., = log 1/R′, with R′ = relative reflectance) is the most appropriate, yet imperfect, function to give a linear representation of the ad sorbate surface concentration in the examples treated here, for which the relative reflectance R′ is typically > 60%. When the adsorbates lead to a strong signal absorption (e.g., R′ < 60%), the Kubelka-Munk function is actually more appropriate. The absorbance allows a simple correction of baseline drifts, which often occur during time-resolved data collection over catalytic materials. Baseline corrections are markedly more complex in the case of the other mathematical transforms, including the function proposed by Matyshak and Krylov (Catal. Today 1995, 25, 1-87), which has been proposed as an appropriate representation of surface concentrations in DRIFTS spectroscopy. © 2007 American Chemical Society. | en_US |
dc.subject | Chemistry | en_US |
dc.title | Quantitative analysis of adsorbate concentrations by diffuse reflectance FT-IR | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Analytical Chemistry | en_US |
article.volume | 79 | en_US |
article.stream.affiliations | Queen's University Belfast | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.