Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/59743
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJintana Sanwongen_US
dc.contributor.authorR. P. Sullivanen_US
dc.date.accessioned2018-09-10T03:20:51Z-
dc.date.available2018-09-10T03:20:51Z-
dc.date.issued2009-04-01en_US
dc.identifier.issn17551633en_US
dc.identifier.issn00049727en_US
dc.identifier.other2-s2.0-77957235672en_US
dc.identifier.other10.1017/S0004972708001330en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77957235672&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/59743-
dc.description.abstractSuppose that X is an infinite set and I(X) is the symmetric inverse semigroup defined on X. If α ε I(X), we let dom α and ran α denote the domain and range of α , respectively, and we say that g(α)=|X/domα| and d(α)=|X/ranα| is the gap and the defect of , respectively. In this paper, we study algebraic properties of the semigroup $A(X)=\{α I(X) g(α )=d(α). For example, we describe Greens relations and ideals in A(X), and determine all maximal subsemigroups of A(X) when X is uncountable. Copyright © Australian Mathematical Society 2009.en_US
dc.subjectMathematicsen_US
dc.titleInjective transformations with equal gap and defecten_US
dc.typeJournalen_US
article.title.sourcetitleBulletin of the Australian Mathematical Societyen_US
article.volume79en_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsUniversity of Western Australiaen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.