Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/59743
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jintana Sanwong | en_US |
dc.contributor.author | R. P. Sullivan | en_US |
dc.date.accessioned | 2018-09-10T03:20:51Z | - |
dc.date.available | 2018-09-10T03:20:51Z | - |
dc.date.issued | 2009-04-01 | en_US |
dc.identifier.issn | 17551633 | en_US |
dc.identifier.issn | 00049727 | en_US |
dc.identifier.other | 2-s2.0-77957235672 | en_US |
dc.identifier.other | 10.1017/S0004972708001330 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77957235672&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/59743 | - |
dc.description.abstract | Suppose that X is an infinite set and I(X) is the symmetric inverse semigroup defined on X. If α ε I(X), we let dom α and ran α denote the domain and range of α , respectively, and we say that g(α)=|X/domα| and d(α)=|X/ranα| is the gap and the defect of , respectively. In this paper, we study algebraic properties of the semigroup $A(X)=\{α I(X) g(α )=d(α). For example, we describe Greens relations and ideals in A(X), and determine all maximal subsemigroups of A(X) when X is uncountable. Copyright © Australian Mathematical Society 2009. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Injective transformations with equal gap and defect | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Bulletin of the Australian Mathematical Society | en_US |
article.volume | 79 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
article.stream.affiliations | University of Western Australia | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.