Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/59733
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Amnuay Kananthai | en_US |
dc.contributor.author | Kamsing Nonlaopon | en_US |
dc.date.accessioned | 2018-09-10T03:20:37Z | - |
dc.date.available | 2018-09-10T03:20:37Z | - |
dc.date.issued | 2009-10-21 | en_US |
dc.identifier.issn | 18070302 | en_US |
dc.identifier.issn | 01018205 | en_US |
dc.identifier.other | 2-s2.0-70350035723 | en_US |
dc.identifier.other | 10.1590/S1807-03022009000200002 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=70350035723&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/59733 | - |
dc.description.abstract | In this paper, we study the nonlinear equation of the form where is the ultra-hyperbolic operator iterated k-times, defined by p + q = n is the dimension of the Euclidean space n, (x, t) = (x1, x2,..., xn, t) n× (0,), k is a positive integer and c is a positive constant. On the suitable conditions for f, u and for the spectrum of the heat kernel, we can find the unique solution in the compact subset of n × (0,). Moreover, if we put k = 1 and q = 0 we obtain the solution of nonlinear equation related to the heat equation. Mathematical subject classification: 35L30, 46F12, 32W30. © 2009 Sociedade Brasileira de Matemática Aplicada e Computacional. | en_US |
dc.subject | Mathematics | en_US |
dc.title | On the generalized nonlinear ultra-hyperbolic heatequation related to the spectrum | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Computational and Applied Mathematics | en_US |
article.volume | 28 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
article.stream.affiliations | Khon Kaen University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.