Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/59730
Title: | A new mapping for finding common solutions of equilibrium problems and fixed point problems of finite family of nonexpansive mappings |
Authors: | Atid Kangtunyakarn Suthep Suantai |
Authors: | Atid Kangtunyakarn Suthep Suantai |
Keywords: | Mathematics |
Issue Date: | 15-Nov-2009 |
Abstract: | In this paper, we introduce and study a new mapping generated by a finite family of nonexpansive mappings and finite real numbers and introduce a general iterative method concerning the new mappings for finding a common element of the set of solutions of an equilibrium problem and of the set of common fixed points of a finite family of nonexpansive mappings in a Hilbert space. Then, we prove a strong convergence theorem of the proposed iterative method for a finite family of nonexpansive mappings to the unique solution of variational inequality which is the optimality condition for a minimization problem. Our main result can be applied to obtain strong convergence of the general iterative methods which are modifications of those in [G. Marino, H.K. Xu, A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 318 (1) (2006) 43-52; S. Plubtieng, R. Punpaeng, A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 336 (1) (2007) 455-469; S. Takahashi, W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (1) (2007) 506-515] to a common element of the set of solutions of an equilibrium problem and the set of fixed points of a nonexpansive mapping. © 2009 Elsevier Ltd. All rights reserved. |
URI: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=67651087274&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/59730 |
ISSN: | 0362546X |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.