Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/59726
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSuthep Suantaien_US
dc.contributor.authorWatcharaporn Cholamjiaken_US
dc.date.accessioned2018-09-10T03:20:30Z-
dc.date.available2018-09-10T03:20:30Z-
dc.date.issued2009-12-01en_US
dc.identifier.issn16870409en_US
dc.identifier.issn10853375en_US
dc.identifier.other2-s2.0-74849116696en_US
dc.identifier.other10.1155/2009/297565en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=74849116696&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/59726-
dc.description.abstractWe prove a weak convergence theorem of the modified Mann iteration process for a uniformly Lipschitzian and generalized asymptotically quasi-nonexpansive mapping in a uniformly convex Banach space. We also introduce two kinds of new monotone hybrid methods and obtain strong convergence theorems for an infinitely countable family of uniformly Lipschitzian and generalized asymptotically quasi-nonexpansive mappings in a Hilbert space. The results improve and extend the corresponding ones announced by Kim and Xu (2006) and Nakajo and Takahashi (2003). © 2009 W. Cholamjiak and S. Suantai.en_US
dc.subjectMathematicsen_US
dc.titleMonotone hybrid projection algorithms for an infinitely countable family of lipschitz generalized asymptotically quasi-nonexpansive mappingsen_US
dc.typeJournalen_US
article.title.sourcetitleAbstract and Applied Analysisen_US
article.volume2009en_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsMahidol Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.