Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/59726
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Suthep Suantai | en_US |
dc.contributor.author | Watcharaporn Cholamjiak | en_US |
dc.date.accessioned | 2018-09-10T03:20:30Z | - |
dc.date.available | 2018-09-10T03:20:30Z | - |
dc.date.issued | 2009-12-01 | en_US |
dc.identifier.issn | 16870409 | en_US |
dc.identifier.issn | 10853375 | en_US |
dc.identifier.other | 2-s2.0-74849116696 | en_US |
dc.identifier.other | 10.1155/2009/297565 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=74849116696&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/59726 | - |
dc.description.abstract | We prove a weak convergence theorem of the modified Mann iteration process for a uniformly Lipschitzian and generalized asymptotically quasi-nonexpansive mapping in a uniformly convex Banach space. We also introduce two kinds of new monotone hybrid methods and obtain strong convergence theorems for an infinitely countable family of uniformly Lipschitzian and generalized asymptotically quasi-nonexpansive mappings in a Hilbert space. The results improve and extend the corresponding ones announced by Kim and Xu (2006) and Nakajo and Takahashi (2003). © 2009 W. Cholamjiak and S. Suantai. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Monotone hybrid projection algorithms for an infinitely countable family of lipschitz generalized asymptotically quasi-nonexpansive mappings | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Abstract and Applied Analysis | en_US |
article.volume | 2009 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
article.stream.affiliations | Mahidol University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.