Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/59519
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTimothy E. O'Brienen_US
dc.contributor.authorSuree Chooprateepen_US
dc.contributor.authorNontiya Homkhamen_US
dc.date.accessioned2018-09-10T03:16:34Z-
dc.date.available2018-09-10T03:16:34Z-
dc.date.issued2009-07-15en_US
dc.identifier.issn0038271Xen_US
dc.identifier.other2-s2.0-67650136138en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=67650136138&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/59519-
dc.description.abstractThis paper provides practical guidelines for choosing efficient geometric and uniform designs for the logistic class of dose-response bioassay model functions in both the homoskedastic Gaussian and Binomial settings. The efficiencies of the designs provided here are typically above 90%, and since the number of design support points generally exceeds the number of parameters, these designs provide a useful and efficient means to confirm the assumed model. Extensions of our basic strategy include a Bayesian maxi-min design approach to reflect a range of values of the initial parameter estimates, as well as geometric/uniform design analogues when uncertainty exists as to the correct scale or to take account of curvature.en_US
dc.subjectDecision Sciencesen_US
dc.subjectMathematicsen_US
dc.titleEfficient geometric and uniform design strategies for sigmoidal regression modelsen_US
dc.typeJournalen_US
article.title.sourcetitleSouth African Statistical Journalen_US
article.volume43en_US
article.stream.affiliationsLoyola University of Chicagoen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.