Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/59517
Full metadata record
DC FieldValueLanguage
dc.contributor.authorV. N. Phaten_US
dc.contributor.authorT. Botmarten_US
dc.contributor.authorP. Niamsupen_US
dc.date.accessioned2018-09-10T03:16:31Z-
dc.date.available2018-09-10T03:16:31Z-
dc.date.issued2009-02-01en_US
dc.identifier.issn1751570Xen_US
dc.identifier.other2-s2.0-57849139259en_US
dc.identifier.other10.1016/j.nahs.2008.10.001en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=57849139259&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/59517-
dc.description.abstractThis paper addresses the exponential stability for a class of nonlinear hybrid time-delay systems. The system to be considered is autonomous and the state delay is time-varying. Using the Lyapunov functional approach combined with the Newton-Leibniz formula, neither restriction on the derivative of time-delay function nor bound restriction on nonlinear perturbations is required to design a switching rule for the exponential stability of nonlinear switched systems with time-varying delays. The delay-dependent stability conditions are presented in terms of the solution of algebraic Riccati equations, which allows computing simultaneously the two bounds that characterize the stability rate of the solution. A simple procedure for constructing the switching rule is also presented. © 2008 Elsevier Ltd. All rights reserved.en_US
dc.subjectComputer Scienceen_US
dc.subjectEngineeringen_US
dc.subjectMathematicsen_US
dc.titleSwitching design for exponential stability of a class of nonlinear hybrid time-delay systemsen_US
dc.typeJournalen_US
article.title.sourcetitleNonlinear Analysis: Hybrid Systemsen_US
article.volume3en_US
article.stream.affiliationsHanoi Institute of Mathematicsen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.