Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/59424
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPrompong Sugunsilen_US
dc.contributor.authorSamerkae Somhomen_US
dc.date.accessioned2018-09-10T03:15:01Z-
dc.date.available2018-09-10T03:15:01Z-
dc.date.issued2009-01-01en_US
dc.identifier.issn18651348en_US
dc.identifier.other2-s2.0-65349093947en_US
dc.identifier.other10.1007/978-3-642-01112-2_27en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=65349093947&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/59424-
dc.description.abstractIn this paper, we propose a stock movement prediction model using self organization map. The correlation is adapted to select inputs from technical indexes. The self-organization map is utilized to make decision of stock selling or buying. The proposed model is tested on the Microsoft and General Electric. Through the experimental test, the method has correctly predicted the movement of stock with close to 90% accuracy in trainnig dataset and 75% accuracy in datatest. The results can be further improved for higher accuracy. © 2009 Springer Berlin Heidelberg.en_US
dc.subjectBusiness, Management and Accountingen_US
dc.subjectComputer Scienceen_US
dc.subjectDecision Sciencesen_US
dc.subjectEngineeringen_US
dc.subjectMathematicsen_US
dc.titleShort term stock prediction using SOMen_US
dc.typeBook Seriesen_US
article.title.sourcetitleLecture Notes in Business Information Processingen_US
article.volume20 LNBIPen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.