Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/59130
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPayap Tarkhamthamen_US
dc.contributor.authorWoraphon Yamakaen_US
dc.contributor.authorSongsak Sriboonchittaen_US
dc.date.accessioned2018-09-05T04:38:51Z-
dc.date.available2018-09-05T04:38:51Z-
dc.date.issued2018-07-26en_US
dc.identifier.issn17426596en_US
dc.identifier.issn17426588en_US
dc.identifier.other2-s2.0-85051392698en_US
dc.identifier.other10.1088/1742-6596/1053/1/012103en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85051392698&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/59130-
dc.description.abstract© Published under licence by IOP Publishing Ltd. Under the limited information situation, underdetermined or ill-posed problem in statistical inference is likely to arise. To solve these problems the generalized maximum entropy (GME) was proposed. In this study, we apply a generalized maximum Tsallis entropy (Tsallis GME) to estimate the kink regression using Monte Carlo Simulation and find that Tsallis GME performs better than the Least squares and Maximum likelihood estimators when the error is generated from unknown distribution. In addition, we can claim that the GME is a robust estimator and suggest that Tsallis GME can be used as an alternative estimator for kink regression model.en_US
dc.subjectPhysics and Astronomyen_US
dc.titleThe generalize maximum Tsallis entropy estimator in kink regression modelen_US
dc.typeConference Proceedingen_US
article.title.sourcetitleJournal of Physics: Conference Seriesen_US
article.volume1053en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.