Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/59120
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPradon Sureephongen_US
dc.contributor.authorWoraphon Yamakaen_US
dc.contributor.authorParavee Maneejuken_US
dc.date.accessioned2018-09-05T04:38:46Z-
dc.date.available2018-09-05T04:38:46Z-
dc.date.issued2018-07-26en_US
dc.identifier.issn17426596en_US
dc.identifier.issn17426588en_US
dc.identifier.other2-s2.0-85051398682en_US
dc.identifier.other10.1088/1742-6596/1053/1/012133en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85051398682&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/59120-
dc.description.abstract© Published under licence by IOP Publishing Ltd. In the application of econometric model, the error distribution is unknown and is not easily to specify in the likelihood function. In some situations, there might exist a mixture distribution in the errors and thus the traditional estimation method would probably yield a biased result. In this study, this mixture distribution of the error term is taken into account and the generalized semiparametric estimation is presented and applied in regression model. We also use an experiment study and the real application analysis to check the performance of this estimator in regression model. The performance of this estimation is then compared with that of conventional Least Squares method in the real data analysis.en_US
dc.subjectPhysics and Astronomyen_US
dc.titleGeneralized predictive recursion maximum likelihood for robust mixture regressionen_US
dc.typeConference Proceedingen_US
article.title.sourcetitleJournal of Physics: Conference Seriesen_US
article.volume1053en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.