Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/58825
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | P. Thongin | en_US |
dc.contributor.author | W. Fupinwong | en_US |
dc.date.accessioned | 2018-09-05T04:33:10Z | - |
dc.date.available | 2018-09-05T04:33:10Z | - |
dc.date.issued | 2018-01-01 | en_US |
dc.identifier.issn | 23148888 | en_US |
dc.identifier.issn | 23148896 | en_US |
dc.identifier.other | 2-s2.0-85049353516 | en_US |
dc.identifier.other | 10.1155/2018/9045790 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85049353516&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/58825 | - |
dc.description.abstract | © 2018 P. Thongin and W. Fupinwong. A Banach space X is said to have the fixed point property if for each nonexpansive mapping T:E→E on a bounded closed convex subset E of X has a fixed point. Let X be an infinite dimensional unital Abelian complex Banach algebra satisfying the following: (i) condition (A) in Fupinwong and Dhompongsa, 2010, (ii) if x,yϵX is such that τx≤τy, for each τϵΩ(X), then x≤y, and (iii) inf{r(x):xϵX,x=1}>0. We prove that there exists an element x0 in X such that 〈x0〉R=i=1kμix0i:kϵN,μiϵR does not have the fixed point property. Moreover, as a consequence of the proof, we have that, for each element x0 in X with infinite spectrum and σ(x0)⊂R, the Banach algebra 〈x0〉=i=1kμix0i:kϵN,μiϵC generated by x0 does not have the fixed point property. | en_US |
dc.subject | Mathematics | en_US |
dc.title | The Fixed Point Property of a Banach Algebra Generated by an Element with Infinite Spectrum | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Journal of Function Spaces | en_US |
article.volume | 2018 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.