Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/58825
Full metadata record
DC FieldValueLanguage
dc.contributor.authorP. Thonginen_US
dc.contributor.authorW. Fupinwongen_US
dc.date.accessioned2018-09-05T04:33:10Z-
dc.date.available2018-09-05T04:33:10Z-
dc.date.issued2018-01-01en_US
dc.identifier.issn23148888en_US
dc.identifier.issn23148896en_US
dc.identifier.other2-s2.0-85049353516en_US
dc.identifier.other10.1155/2018/9045790en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85049353516&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/58825-
dc.description.abstract© 2018 P. Thongin and W. Fupinwong. A Banach space X is said to have the fixed point property if for each nonexpansive mapping T:E→E on a bounded closed convex subset E of X has a fixed point. Let X be an infinite dimensional unital Abelian complex Banach algebra satisfying the following: (i) condition (A) in Fupinwong and Dhompongsa, 2010, (ii) if x,yϵX is such that τx≤τy, for each τϵΩ(X), then x≤y, and (iii) inf{r(x):xϵX,x=1}>0. We prove that there exists an element x0 in X such that 〈x0〉R=i=1kμix0i:kϵN,μiϵR does not have the fixed point property. Moreover, as a consequence of the proof, we have that, for each element x0 in X with infinite spectrum and σ(x0)⊂R, the Banach algebra 〈x0〉=i=1kμix0i:kϵN,μiϵC generated by x0 does not have the fixed point property.en_US
dc.subjectMathematicsen_US
dc.titleThe Fixed Point Property of a Banach Algebra Generated by an Element with Infinite Spectrumen_US
dc.typeJournalen_US
article.title.sourcetitleJournal of Function Spacesen_US
article.volume2018en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.