Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/58798
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKritsada Sangkhananen_US
dc.contributor.authorJintana Sanwongen_US
dc.date.accessioned2018-09-05T04:32:27Z-
dc.date.available2018-09-05T04:32:27Z-
dc.date.issued2018-07-16en_US
dc.identifier.issn00371912en_US
dc.identifier.other2-s2.0-85049951974en_US
dc.identifier.other10.1007/s00233-018-9956-zen_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85049951974&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/58798-
dc.description.abstract© 2018 Springer Science+Business Media, LLC, part of Springer Nature Let P(V) be the partial linear transformation semigroup of a vector space V under composition. Given a fixed subspace W of V, define the following subsemigroups of P(V): (Formula presented.)In this paper, we prove certain isomorphism theorems and compute the ranks of these three semigroups for any proper subspace W of V when V is a finite-dimensional vector space over a finite field. Gaussian binomial coefficients play an essential role in these computations.en_US
dc.subjectMathematicsen_US
dc.titleRanks and isomorphism theorems of semigroups of linear transformations with restricted rangeen_US
dc.typeJournalen_US
article.title.sourcetitleSemigroup Forumen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.