Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/58798
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kritsada Sangkhanan | en_US |
dc.contributor.author | Jintana Sanwong | en_US |
dc.date.accessioned | 2018-09-05T04:32:27Z | - |
dc.date.available | 2018-09-05T04:32:27Z | - |
dc.date.issued | 2018-07-16 | en_US |
dc.identifier.issn | 00371912 | en_US |
dc.identifier.other | 2-s2.0-85049951974 | en_US |
dc.identifier.other | 10.1007/s00233-018-9956-z | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85049951974&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/58798 | - |
dc.description.abstract | © 2018 Springer Science+Business Media, LLC, part of Springer Nature Let P(V) be the partial linear transformation semigroup of a vector space V under composition. Given a fixed subspace W of V, define the following subsemigroups of P(V): (Formula presented.)In this paper, we prove certain isomorphism theorems and compute the ranks of these three semigroups for any proper subspace W of V when V is a finite-dimensional vector space over a finite field. Gaussian binomial coefficients play an essential role in these computations. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Ranks and isomorphism theorems of semigroups of linear transformations with restricted range | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Semigroup Forum | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.