Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/58794
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKritsada Sangkhananen_US
dc.contributor.authorTeerapong Suksumranen_US
dc.date.accessioned2018-09-05T04:32:23Z-
dc.date.available2018-09-05T04:32:23Z-
dc.date.issued2018-09-01en_US
dc.identifier.issn14209012en_US
dc.identifier.issn14226383en_US
dc.identifier.other2-s2.0-85048585975en_US
dc.identifier.other10.1007/s00025-018-0855-0en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85048585975&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/58794-
dc.description.abstract© 2018, Springer International Publishing AG, part of Springer Nature. In the literature, the famous Heisenberg group is the group of matrices of the form (1xz01y001),where x, y, and z are real numbers. In the present article, we examine a generalized Heisenberg group, obtained from an R-module M endowed with an R-bilinear form β, where R is a ring with identity. We show that the structure of the generalized Heisenberg group and its generating space are intertwined. In particular, we prove that if β is symmetric, then the corresponding Heisenberg group possesses an involutive decomposition into subgroups, which eventually becomes the semidirect product of groups. This leads to a better understanding of the algebraic structure of the generalized Heisenberg group as well as its extensions by subgroups.en_US
dc.subjectMathematicsen_US
dc.titleOn Generalized Heisenberg Groups: The Symmetric Caseen_US
dc.typeJournalen_US
article.title.sourcetitleResults in Mathematicsen_US
article.volume73en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.