Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/58587
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVladik Kreinovichen_US
dc.contributor.authorAnh H. Lyen_US
dc.contributor.authorOlga Koshelevaen_US
dc.contributor.authorSongsak Sriboonchittaen_US
dc.date.accessioned2018-09-05T04:26:33Z-
dc.date.available2018-09-05T04:26:33Z-
dc.date.issued2018-01-01en_US
dc.identifier.issn1860949Xen_US
dc.identifier.other2-s2.0-85038827524en_US
dc.identifier.other10.1007/978-3-319-73150-6_10en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85038827524&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/58587-
dc.description.abstract© 2018, Springer International Publishing AG. It is known that symmetry ideas can explain the empirical success of many non-linear models. This explanation makes these models theoretically justified and thus, more reliable. However, the models remain non-linear and thus, identification or the model’s parameters based on the observations remains a computationally expensive nonlinear optimization problem. In this paper, we show that symmetry ideas can not only help to select and justify a nonlinear model, they can also help us design computationally efficient almost-linear algorithms for identifying the model’s parameters.en_US
dc.subjectComputer Scienceen_US
dc.titleEfficient parameter-estimating algorithms for symmetry-motivated models: Econometrics and beyonden_US
dc.typeBook Seriesen_US
article.title.sourcetitleStudies in Computational Intelligenceen_US
article.volume760en_US
article.stream.affiliationsUniversity of Texas at El Pasoen_US
article.stream.affiliationsBanking University of Ho Chi Minh Cityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.