Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/58577
Full metadata record
DC FieldValueLanguage
dc.contributor.authorQuanrui Songen_US
dc.contributor.authorSongsak Sriboonchittaen_US
dc.contributor.authorSomsak Chanaimen_US
dc.contributor.authorChongkolnee Rungruangen_US
dc.date.accessioned2018-09-05T04:26:25Z-
dc.date.available2018-09-05T04:26:25Z-
dc.date.issued2018-01-01en_US
dc.identifier.issn16113349en_US
dc.identifier.issn03029743en_US
dc.identifier.other2-s2.0-85043990881en_US
dc.identifier.other10.1007/978-3-319-75429-1_27en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85043990881&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/58577-
dc.description.abstract© 2018, Springer International Publishing AG, part of Springer Nature. Generalized autoregressive conditional heteroscedasticity (GARCH) provides useful techniques for modeling the dynamic volatility model. Several estimation techniques have been developed over the years, for examples Maximum likelihood, Bayesian, and Entropy. Among these, entropy can be considered an efficient tool for estimating GARCH model since it does not require any distribution assumptions which must be given in Maximum likelihood and Bayesian estimators. Moreover, we address the problem of estimating GARCH model characterized by ill-posed features. We introduce a GARCH framework based on the Generalized Maximum Entropy (GME) estimation method. Finally, in order to better highlight some characteristics of the proposed method, we perform a Monte Carlo experiment and we analyze a real case study. The results show that entropy estimator is successful in estimating the parameters in GARCH model and the estimated parameters are close to the true values.en_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titleEstimation of Volatility on the Small Sample with Generalized Maximum Entropyen_US
dc.typeBook Seriesen_US
article.title.sourcetitleLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
article.volume10758 LNAIen_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsPrince of Songkla Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.