Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/58546
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBenjamas Panyangamen_US
dc.contributor.authorMatinee Kiewkanyaen_US
dc.date.accessioned2018-09-05T04:26:09Z-
dc.date.available2018-09-05T04:26:09Z-
dc.date.issued2018-01-01en_US
dc.identifier.issn21945357en_US
dc.identifier.other2-s2.0-85022176707en_US
dc.identifier.other10.1007/978-3-319-60663-7_8en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85022176707&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/58546-
dc.description.abstract© Springer International Publishing AG 2018. Size estimation is one of important processes related to success of software project management. This paper presents novel software size estimation model by using Multilayer Perceptron approach. Software size in terms of Lines of code is used as criterion variable. Structural complexity metrics are used as predictors. The metrics can be captured from a software design model named UML Class diagram. A high predictive ability of the model is shown with correlation coefficient measure. Moreover, four training algorithms; Levenberg-Marquardt, Scaled Conjugate Gradient, Broyden-Fletcher-Golfarb-Shanno and Bayesian Regularization, have been applied on the network for better estimation. The obtained results indicate the highest accuracy on the model with Bayesian Regularization algorithm.en_US
dc.subjectComputer Scienceen_US
dc.subjectEngineeringen_US
dc.titleSoftware size estimation in design phase based on MLP neural networken_US
dc.typeBook Seriesen_US
article.title.sourcetitleAdvances in Intelligent Systems and Computingen_US
article.volume566en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.