Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/58533
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNoppasit Chakpitaken_US
dc.contributor.authorWoraphon Yamakaen_US
dc.contributor.authorSongsak Sriboonchittaen_US
dc.date.accessioned2018-09-05T04:26:00Z-
dc.date.available2018-09-05T04:26:00Z-
dc.date.issued2018-01-01en_US
dc.identifier.issn1860949Xen_US
dc.identifier.other2-s2.0-85037842432en_US
dc.identifier.other10.1007/978-3-319-70942-0_26en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85037842432&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/58533-
dc.description.abstract© Springer International Publishing AG 2018. In this paper, we experiment with several different models with belief function to forecast Thai telephone subscribers. This approach will provide an uncertainty about predicted values and yield a predictive belief function that quantities the uncertainty about the future data. The proposed forecasting models include linear AR, Kink AR, Threshold AR, and Markov Switching AR models. Next, we compare the out-of-sample performance using RMSE and MAE. The results suggest that the out-of-sample belief function based KAR forecast is more accurate than other models. Finally, we find that the growth rate of Thai telephone subscription in 2016 will fall around 6.08%.en_US
dc.subjectComputer Scienceen_US
dc.titleComparing linear and nonlinear models in forecasting telephone subscriptions using likelihood based belief functionsen_US
dc.typeBook Seriesen_US
article.title.sourcetitleStudies in Computational Intelligenceen_US
article.volume753en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.