Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/58532
Title: Volatility in Thailand stock market using high-frequency data
Authors: Saowaluk Duangin
Jirakom Sirisrisakulchai
Songsak Sriboonchitta
Keywords: Computer Science
Issue Date: 1-Jan-2018
Abstract: © Springer International Publishing AG 2018. The objective of this research is twofold: First, we aim to investigate the performance of conventional GARCH and GARCH-jump models when the data has high frequency. Second, the obtained conditional volatility from the best fit model is used to forecast and matched with the macroeconomic news announcement. We use GARCH and GARCH-jump models with high-frequency dataset of log return of Thailand stock market index (SET) from January, 2008 to December, 2015. We find that the volatility estimations by these two models have the same pattern but volatility estimation by GARCH-jump is higher than conventional GARCH model. However, the GARCH (1,1) and GARCH (1,1)-jump performances are non-stationary to estimate the volatility for 5 min interval return of SET but are stationary to estimate for 15 min, 30 min, 1 h, and 2 h returns of SET. Our results also show the matching jump point with macroeconomic news announcement. The empirical results support our assumption that macroeconomic news announcement may lead to volatility change in SET.
URI: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85037828828&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/58532
ISSN: 1860949X
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.