Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/58509
Full metadata record
DC FieldValueLanguage
dc.contributor.authorU. Raghavendraen_US
dc.contributor.authorAnjan Gudigaren_US
dc.contributor.authorM. Maithrien_US
dc.contributor.authorArkadiusz Gertychen_US
dc.contributor.authorKristen M. Meiburgeren_US
dc.contributor.authorChai Hong Yeongen_US
dc.contributor.authorChakri Madlaen_US
dc.contributor.authorPailin Kongmebholen_US
dc.contributor.authorFilippo Molinarien_US
dc.contributor.authorKwan Hoong Ngen_US
dc.contributor.authorU. Rajendra Acharyaen_US
dc.date.accessioned2018-09-05T04:25:44Z-
dc.date.available2018-09-05T04:25:44Z-
dc.date.issued2018-04-01en_US
dc.identifier.issn18790534en_US
dc.identifier.issn00104825en_US
dc.identifier.other2-s2.0-85042178227en_US
dc.identifier.other10.1016/j.compbiomed.2018.02.002en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85042178227&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/58509-
dc.description.abstract© 2018 Elsevier Ltd Ultrasound imaging is one of the most common visualizing tools used by radiologists to identify the location of thyroid nodules. However, visual assessment of nodules is difficult and often affected by inter- and intra-observer variabilities. Thus, a computer-aided diagnosis (CAD) system can be helpful to cross-verify the severity of nodules. This paper proposes a new CAD system to characterize thyroid nodules using optimized multi-level elongated quinary patterns. In this study, higher order spectral (HOS) entropy features extracted from these patterns appropriately distinguished benign and malignant nodules under particle swarm optimization (PSO) and support vector machine (SVM) frameworks. Our CAD algorithm achieved a maximum accuracy of 97.71% and 97.01% in private and public datasets respectively. The evaluation of this CAD system on both private and public datasets confirmed its effectiveness as a secondary tool in assisting radiological findings.en_US
dc.subjectComputer Scienceen_US
dc.subjectMedicineen_US
dc.titleOptimized multi-level elongated quinary patterns for the assessment of thyroid nodules in ultrasound imagesen_US
dc.typeJournalen_US
article.title.sourcetitleComputers in Biology and Medicineen_US
article.volume95en_US
article.stream.affiliationsManipal Institute of Technologyen_US
article.stream.affiliationsCedars-Sinai Medical Centeren_US
article.stream.affiliationsPolitecnico di Torinoen_US
article.stream.affiliationsUniversity of Malayaen_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsNgee Ann Polytechnicen_US
article.stream.affiliationsSingapore Institute of Managementen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.