Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/58494
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKitimapond Rattanadoungen_US
dc.contributor.authorPaskorn Champraserten_US
dc.contributor.authorSomrawee Aramkulen_US
dc.date.accessioned2018-09-05T04:25:34Z-
dc.date.available2018-09-05T04:25:34Z-
dc.date.issued2018-06-04en_US
dc.identifier.other2-s2.0-85049351679en_US
dc.identifier.other10.1109/ICSIGSYS.2018.8373573en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85049351679&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/58494-
dc.description.abstract© 2018 IEEE. This paper proposes and evaluates an emotional state classification using a physiological signal interpretation framework. The proposed Emo-CSI framework consists of three components which are the following: 1) physiological signal sensing, 2) data pre-processing, and 3) emotional state classification. The Emo-CSI framework applies physiological signals (i.e., heart rate, breathing pattern, skin temperature, skin humidity, and skin conductivity) to classify the emotional state. The emotional state classification results in an emotional state (i.e., displeasure, neutral, pleasure, calm, medium, and excited). This research also investigates the accuracy of three classification techniques which are the following: 1) support vector machine (SVM), 2) artificial neural network (ANN), and 3) decision tree (DT). The evaluation results show that the physiological signals are related to emotional state. Using SVM as a classification in Emo-CSI outperforms the other classification techniques.en_US
dc.subjectComputer Scienceen_US
dc.subjectMedicineen_US
dc.subjectPhysics and Astronomyen_US
dc.titleThe emotional state classification using physiological signal interpretation frameworken_US
dc.typeConference Proceedingen_US
article.title.sourcetitle2018 International Conference on Signals and Systems, ICSigSys 2018 - Proceedingsen_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsChiang Mai Rajabhat Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.