Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/58490
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHai Q. Dinhen_US
dc.contributor.authorAbhay Kumar Singhen_US
dc.contributor.authorNarendra Kumaren_US
dc.contributor.authorSongsak Sriboonchittaen_US
dc.date.accessioned2018-09-05T04:25:23Z-
dc.date.available2018-09-05T04:25:23Z-
dc.date.issued2018-06-18en_US
dc.identifier.issn10897798en_US
dc.identifier.other2-s2.0-85048893606en_US
dc.identifier.other10.1109/LCOMM.2018.2848942en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85048893606&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/58490-
dc.description.abstractIEEE In this article, we discuss the construction of all constacyclic codes over R = ℤ4[v]=<v2 – v>. Some significant properties of linear codes over R have been explored. The self-dual constacyclic codes for odd length over R are determined. Several examples of (1 + 2v)-constacyclic codes and (3 + 2v)-constacyclic codes over R, whose ℤ4-images are new ℤ4-linear codes with better parameters according to [16], are provided.en_US
dc.subjectComputer Scienceen_US
dc.subjectEngineeringen_US
dc.subjectMathematicsen_US
dc.titleOn constacyclic codes over Z 4 [v]/<v2 -v> and their Gray imagesen_US
dc.typeJournalen_US
article.title.sourcetitleIEEE Communications Lettersen_US
article.stream.affiliationsKent State Universityen_US
article.stream.affiliationsIndian Institute of Technology (Indian School of Mines), Dhanbaden_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.