Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/58455
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKanyaporn Adpakpangen_US
dc.contributor.authorSeung Mi Ohen_US
dc.contributor.authorDaniel Adjei Agyemanen_US
dc.contributor.authorXiaoyan Jinen_US
dc.contributor.authorNutpaphat Jarulertwathanaen_US
dc.contributor.authorIn Young Kimen_US
dc.contributor.authorThapanee Sarakonsrien_US
dc.contributor.authorYong Mook Kangen_US
dc.contributor.authorSeong Ju Hwangen_US
dc.date.accessioned2018-09-05T04:24:32Z-
dc.date.available2018-09-05T04:24:32Z-
dc.date.issued2018-04-25en_US
dc.identifier.issn16163028en_US
dc.identifier.issn1616301Xen_US
dc.identifier.other2-s2.0-85042153167en_US
dc.identifier.other10.1002/adfm.201707106en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85042153167&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/58455-
dc.description.abstract© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Holey 2D nanosheets of low-valent Mn2O3can be synthesized by thermally induced phase transition of exfoliated layered MnO2nanosheets. The heat treatment of layered MnO2nanosheets at elevated temperatures leads not only to transitions to low-valent manganese oxides but also to the creation of surface hole in the 2D nanosheet crystallites. Despite distinct phase transitions, highly anisotropic 2D morphology of the precursor MnO2material remains intact upon the heat treatment whereas the diameter of surface hole becomes larger with increasing heating temperature. The obtained holey 2D Mn2O3nanosheets show promising electrocatalyst performances for oxygen evolution reaction, which are much superior to that of nonporous Mn2O3crystal. Among the present materials, the holey Mn2O3nanosheet calcined at 500 °C displays the best electrocatalyst functionality with markedly decreased overpotential, indicating the importance of heating condition in optimizing the electrocatalytic activity. Of prime importance is that this material shows much better catalytic activity for Li–O2batteries than does nonporous Mn2O3, underscoring the critical role of porous 2D morphology in this functionality. This study clearly demonstrates the unique advantage of holey 2D nanosheet morphology in exploring economically feasible transition metal oxide-based electrocatalysts and electrodes for Li–O2batteries.en_US
dc.subjectChemistryen_US
dc.subjectMaterials Scienceen_US
dc.subjectPhysics and Astronomyen_US
dc.titleHoley 2D Nanosheets of Low-Valent Manganese Oxides with an Excellent Oxygen Catalytic Activity and a High Functionality as a Catalyst for Li–O<inf>2</inf>Batteriesen_US
dc.typeJournalen_US
article.title.sourcetitleAdvanced Functional Materialsen_US
article.volume28en_US
article.stream.affiliationsEwha Womans Universityen_US
article.stream.affiliationsVidyasirimedhi Institute of Science and Technologyen_US
article.stream.affiliationsDongguk University, Seoulen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.