Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/58422
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Pratchaya Tipduangta | en_US |
dc.contributor.author | Khaled Takieddin | en_US |
dc.contributor.author | László Fábián | en_US |
dc.contributor.author | Peter Belton | en_US |
dc.contributor.author | Sheng Qi | en_US |
dc.date.accessioned | 2018-09-05T04:23:53Z | - |
dc.date.available | 2018-09-05T04:23:53Z | - |
dc.date.issued | 2018-01-01 | en_US |
dc.identifier.issn | 20462069 | en_US |
dc.identifier.other | 2-s2.0-85045526216 | en_US |
dc.identifier.other | 10.1039/c8ra01182f | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85045526216&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/58422 | - |
dc.description.abstract | © 2018 The Royal Society of Chemistry. Fenofibrate (FEN) is a dyslipidemia treatment agent which is poorly soluble in water. FEN has tendency to form polymorphs and its crystallisation behaviour is difficult to predict. The nucleation process can be initiated by mechanical disruption such as ball milling or surface scratching which may result in different crystallisation behaviour to that observed in the unperturbed system. This study has obtained insights into the controllability of FEN crystallisation by means of regulating the exposed surface and growth temperatures during its crystallisation. The availability of an open top surface (OTS) during the crystallisation of the FEN melt resulted in a mixture containing FEN form I and IIa (I ≫ IIa) at room temperature, and in the range 40 to 70 °C. Covering the surface led to significant increases in the yield of form IIa at room temperature and at 40 and 50 °C. These temperatures also yielded the highest amount of form IIa in the OTS samples whilst crystallisation at 70 °C led to only FEN form I crystals regardless of the availability of the free surface. The metastable FEN form IIa transforms to the stable form I under the influence of a mechanical stress. Additionally, the introduction of OTS before the completion of crystallisation of form IIa led to a 'switch' of from IIa growth to form I. This study demonstrates that the polymorph selection of FEN can be obtained by the manipulation of the crystallisation conditions. | en_US |
dc.subject | Chemical Engineering | en_US |
dc.subject | Chemistry | en_US |
dc.title | Towards controlling the crystallisation behaviour of fenofibrate melt: Triggers of crystallisation and polymorphic transformation | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | RSC Advances | en_US |
article.volume | 8 | en_US |
article.stream.affiliations | University of East Anglia | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.