Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/58405
Title: | Broadening the photoresponsive activity of anatase titanium dioxide particles via decoration with partial gold shells |
Authors: | Orawan Khantamat Chien Hung Li Si Ping Liu Tingting Liu Han Ju Lee Oussama Zenasni Tai Chou Lee Chengzhi Cai T. Randall Lee |
Authors: | Orawan Khantamat Chien Hung Li Si Ping Liu Tingting Liu Han Ju Lee Oussama Zenasni Tai Chou Lee Chengzhi Cai T. Randall Lee |
Keywords: | Chemical Engineering;Materials Science |
Issue Date: | 1-Mar-2018 |
Abstract: | © 2017 Elsevier Inc. Titanium dioxide (TiO2) has gained increasing interest in materials research due to its outstanding properties and promising applications in a wide range of fields. From this perspective, we report the synthesis of custom-designed anatase TiO2submicrometer particles coated with partial Au shells (ATiO2-AuShl). The synthetic strategy used herein yields uniformly shaped monodisperse particles. Amorphous TiO2core particles were synthesized using template-free oxidation and hydrolysis of titanium nitride (TiN); subsequent hydrothermal treatment generated anatase TiO2(ATiO2) particles. Coating ATiO2particles with partial Au shells was accomplished using a simple seeded-growth method. Evaluation of the optical properties of these ATiO2-AuShl particles showed that these submicrometer composites exhibited an intense absorption peak for TiO2in the UV region (∼326 nm) and a broad extinction band in the visible range (∼650 nm) arising from the incomplete Au shell. These ATiO2-AuShl composite particles provide a unique and effective means for broadening the optical response of TiO2-based nano- and micron-scale materials. The simplicity of our synthetic method should broaden the application of ATiO2-AuShl particles in various visible light-driven technologies. |
URI: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85036655387&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/58405 |
ISSN: | 10957103 00219797 |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.