Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/57881
Title: | Electronic properties of two-dimensional zinc oxide in hexagonal, (4,4)-tetragonal, and (4,8)-tetragonal structures by using Hybrid Functional calculation |
Authors: | C. Supatutkul S. Pramchu A. P. Jaroenjittichai Y. Laosiritaworn |
Authors: | C. Supatutkul S. Pramchu A. P. Jaroenjittichai Y. Laosiritaworn |
Keywords: | Physics and Astronomy |
Issue Date: | 20-Oct-2017 |
Abstract: | © Published under licence by IOP Publishing Ltd. This work reports the structures and electronic properties of two-dimensional (2D) ZnO in hexagonal, (4,8)-tetragonal, and (4,4)-tetragonal monolayer using GGA and HSE-hybrid functional. The calculated results show that the band gaps of 2D ZnO sheets are wider than those of the bulk ZnO. The hexagonal and (4,8)-tetragonal phases yield direct band gaps, which are 4.20 eV, and 4.59 eV respectively, while the (4,4)-tetragonal structure has an indirect band gap of 3.02 eV. The shrunken Zn-O bond lengths in the hexagonal and (4,8)-tetragonal indicate that they become more ionic in comparison with the bulk ZnO. In addition, the hexagonal ZnO sheet is the most energetically favourable. The total energy differences of (4,8)-tetragonal and (4,4)-tetragonal sheets from that of hexagonal monolayer (per formula unit) are 197 meV and 318 meV respectively. |
URI: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85034087145&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/57881 |
ISSN: | 17426596 17426588 |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.