Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/57547
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChatchai Khiewngamdeeen_US
dc.contributor.authorSongsak Sriboonchittaen_US
dc.contributor.authorSomsak Chanaimen_US
dc.contributor.authorChongkolnee Rungruangen_US
dc.date.accessioned2018-09-05T03:45:28Z-
dc.date.available2018-09-05T03:45:28Z-
dc.date.issued2017-01-01en_US
dc.identifier.issn16860209en_US
dc.identifier.other2-s2.0-85039701746en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85039701746&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/57547-
dc.description.abstract© 2017 by the Mathematical Association of Thailand. All rights reserved. In the classical maximum likelihood estimation of stochastic frontier model, a strong assumption on two error components, namely symmetric noise (Vj) and the non-negative inefficiency (Uj), are required. This could lead to non-reliable and erroneous interpretations when we misspecify the probability distribution of the error components. To overcome this problem, we apply the generalized maximum entropy (GME) approach to estimate the stochastic frontier model which allows us to avoid the need for making an ad hoc assumption about the distribution of the noise and inefficiency components. In this study, we investigate the technical efficiency of coffee production using generalized maximum entropy. The results show that the technical efficiency scores obtained from GME estimator are much smaller than ones from the maximum likelihood method, even though the estimated parameters are quite indifferent. In addition, we also find that the wider support value of the inefficiency component, the lower score of the estimated technical efficiency.en_US
dc.subjectMathematicsen_US
dc.titleCoffee stochastic frontier model with maximum entropyen_US
dc.typeJournalen_US
article.title.sourcetitleThai Journal of Mathematicsen_US
article.volume15en_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsPrince of Songkla Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.