Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/57524
Full metadata record
DC FieldValueLanguage
dc.contributor.authorA. Suebsriwichaien_US
dc.contributor.authorT. Mouktonglangen_US
dc.date.accessioned2018-09-05T03:45:07Z-
dc.date.available2018-09-05T03:45:07Z-
dc.date.issued2017-01-01en_US
dc.identifier.issn16870042en_US
dc.identifier.issn1110757Xen_US
dc.identifier.other2-s2.0-85019549547en_US
dc.identifier.other10.1155/2017/7640347en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85019549547&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/57524-
dc.description.abstract© 2017 A. Suebsriwichai and T. Mouktonglang. The crossing number of graph G is the minimum number of edges crossing in any drawing of G in a plane. In this paper we describe a method of finding the bound of 2-page fixed linear crossing number of G. We consider a conflict graph G′ of G. Then, instead of minimizing the crossing number of G, we show that it is equivalent to maximize the weight of a cut of G′. We formulate the original problem into the MAXCUT problem. We consider a semidefinite relaxation of the MAXCUT problem. An example of a case where G is hypercube is explicitly shown to obtain an upper bound. The numerical results confirm the effectiveness of the approximation.en_US
dc.subjectMathematicsen_US
dc.titleBound for the 2-Page Fixed Linear Crossing Number of Hypercube Graph via SDP Relaxationen_US
dc.typeJournalen_US
article.title.sourcetitleJournal of Applied Mathematicsen_US
article.volume2017en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.