Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/57524
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | A. Suebsriwichai | en_US |
dc.contributor.author | T. Mouktonglang | en_US |
dc.date.accessioned | 2018-09-05T03:45:07Z | - |
dc.date.available | 2018-09-05T03:45:07Z | - |
dc.date.issued | 2017-01-01 | en_US |
dc.identifier.issn | 16870042 | en_US |
dc.identifier.issn | 1110757X | en_US |
dc.identifier.other | 2-s2.0-85019549547 | en_US |
dc.identifier.other | 10.1155/2017/7640347 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85019549547&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/57524 | - |
dc.description.abstract | © 2017 A. Suebsriwichai and T. Mouktonglang. The crossing number of graph G is the minimum number of edges crossing in any drawing of G in a plane. In this paper we describe a method of finding the bound of 2-page fixed linear crossing number of G. We consider a conflict graph G′ of G. Then, instead of minimizing the crossing number of G, we show that it is equivalent to maximize the weight of a cut of G′. We formulate the original problem into the MAXCUT problem. We consider a semidefinite relaxation of the MAXCUT problem. An example of a case where G is hypercube is explicitly shown to obtain an upper bound. The numerical results confirm the effectiveness of the approximation. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Bound for the 2-Page Fixed Linear Crossing Number of Hypercube Graph via SDP Relaxation | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Journal of Applied Mathematics | en_US |
article.volume | 2017 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.