Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/57523
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPhannipa Kabcomeen_US
dc.contributor.authorThanasak Mouktonglangen_US
dc.date.accessioned2018-09-05T03:45:07Z-
dc.date.available2018-09-05T03:45:07Z-
dc.date.issued2017-01-01en_US
dc.identifier.issn16860209en_US
dc.identifier.other2-s2.0-85018941173en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85018941173&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/57523-
dc.description.abstract© 2017 by the Mathematical Association of Thailand. All rights reserved. Stochastic programming is a framework for modeling optimization problems that involve uncertainty. In this paper, we study two-stage stochastic quadratic symmetric programming to handle uncertainty in data defining (Deter-ministic) symmetric programs in which a quadratic function is minimized over the intersection of an affine set and a symmetric cone with finite event space. Twostage stochastic programs can be modeled as large deterministic programming and we present an interior point trust region algorithm to solve this problem. Numerical results on randomly generated data are available for stochastic symmetric programs. The complexity of our algorithm is proved.en_US
dc.subjectMathematicsen_US
dc.titleAn interior-point trust-region algorithm for quadratic stochastic symmetric programmingen_US
dc.typeJournalen_US
article.title.sourcetitleThai Journal of Mathematicsen_US
article.volume15en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.