Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/57485
Title: A DFT study of volatile organic compounds adsorption on transition metal deposited graphene
Authors: Manaschai Kunaseth
Preeyaporn Poldorn
Anchalee Junkeaw
Jittima Meeprasert
Chompoonut Rungnim
Supawadee Namuangruk
Nawee Kungwan
Chan Inntam
Siriporn Jungsuttiwong
Authors: Manaschai Kunaseth
Preeyaporn Poldorn
Anchalee Junkeaw
Jittima Meeprasert
Chompoonut Rungnim
Supawadee Namuangruk
Nawee Kungwan
Chan Inntam
Siriporn Jungsuttiwong
Keywords: Materials Science
Issue Date: 28-Feb-2017
Abstract: © 2016 Elsevier B.V. Recently, elevated global emission of volatile organic compounds (VOCs) was associated to the acceleration and increasing severity of climate change worldwide. In this work, we investigated the performance of VOCs removal via modified carbon-based adsorbent using density functional theory. Here, four transition metals (TMs) including Pd, Pt, Ag, and Au were deposited onto single-vacancy defective graphene (SDG) surface to increase the adsorption efficiency. Five prototypical VOCs including benzene, furan, pyrrole, pyridine, and thiophene were used to study the adsorption capability of metal-deposited graphene adsorbent. Calculation results revealed that Pd, Pt, Au, and Ag atoms and nanoclusters bind strongly onto the SDG surface. In this study, benzene, furan and pyrrole bind in the π-interaction mode using delocalized π-electron in aromatic ring, while pyridine and thiophene favor X- interaction mode, donating lone pair electron from heteroatom. In terms of adsorption, pyridine VOC adsorption strengths to the TM-cluster doped SDG surfaces are Pt4(−2.11 eV) > Pd4(−2.05 eV) > Ag4(−1.53 eV) > Au4(−1.87 eV). Our findings indicate that TM-doped SDG is a suitable adsorbent material for VOC removal. In addition, partial density of states analysis suggests that benzene, furan, and pyrrole interactions with TM cluster are based on p-orbitals of carbon atoms, while pyridine and thiophene interactions are facilitated by hybridized sp2-orbitals of heteroatoms. This work provides a key insight into the fundamentals of VOCs adsorption on carbon-based adsorbent.
URI: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85006810513&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/57485
ISSN: 01694332
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.