Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/57373
Title: Spectroscopic investigations of Nd<sup>3+</sup>doped gadolinium calcium silica borate glasses for the NIR emission at 1059 nm
Authors: C. R. Kesavulu
H. J. Kim
S. W. Lee
J. Kaewkhao
N. Wantana
E. Kaewnuam
S. Kothan
S. Kaewjaeng
Keywords: Engineering
Materials Science
Issue Date: 1-Jan-2017
Abstract: © 2016 Elsevier B.V. The Nd3+-doped gadolinium calcium silica borate (BSGdCaNd) glasses of composition (55-x) B2O3- 10 SiO2- 25 Gd2O3-10 CaO -x Nd2O3, where x = 0.0, 0.05, 0.5, 1.0, 1.5, 2.0 and 2.5 mol %, have been prepared by conventional melt quenching technique and are characterized through structural, thermal, absorption, emission and decay time measurements. Based on the Judd-Ofelt intensity parameters and radiative properties were determined from the absorption spectrum. The emission spectra recorded for BSGdCaNd glasses gives three emission transitions4F3/2 → 4I9/2(903 nm),4F3/2 → 4I11/2(1059 nm) and4F3/2 → 4I13/2(1334 nm) for which effective bandwidths (Δλeff) and stimulated emission cross-section (σ(λp)) are evaluated. Branching ratios (βR) measured for BSGdCaNd0.5 glass show that4F3/2 → 4I11/2transition is quite suitable for lasing applications. The intensity of emission spectra increases with increase in the concentration of Nd3+ion up to 1.0 mol% and beyond that concentration, quenching is observed. The decay from4F3/2level is found to be non-exponential nature for concentrations of Nd3+ions. The non-exponential curve has been fitted to the Inokuti-Hirayama model to understand the nature of energy transfer process. Hence, the high emission cross-section (1.39 × 10−20 cm2), branching ratio (0.58) and long lifetime (342 μs) indicate that the BSGdCaNd0.5 glass system could be considered as a good candidate for strong NIR lasers at 1059 nm.
URI: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84994692144&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/57373
ISSN: 09258388
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.