Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/57333
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHai Q. Dinhen_US
dc.contributor.authorBac T. Nguyenen_US
dc.contributor.authorSongsak Sriboonchittaen_US
dc.date.accessioned2018-09-05T03:38:44Z-
dc.date.available2018-09-05T03:38:44Z-
dc.date.issued2017-05-01en_US
dc.identifier.issn10902465en_US
dc.identifier.issn10715797en_US
dc.identifier.other2-s2.0-85006377812en_US
dc.identifier.other10.1016/j.ffa.2016.11.008en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85006377812&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/57333-
dc.description.abstract© 2016 Finite commutative semi-simple rings are direct sum of finite fields. In this study, we investigate the algebraic structure of λ-constacyclic codes over such finite semi-simple rings. Among others, necessary and sufficient conditions for the existence of self-dual, LCD, and Hermitian dual-containing λ-constacyclic codes over finite semi-simple rings are provided. Using the CSS and Hermitian constructions, quantum MDS codes over finite semi-simple rings are constructed.en_US
dc.subjectEngineeringen_US
dc.subjectMathematicsen_US
dc.titleConstacyclic codes over finite commutative semi-simple ringsen_US
dc.typeJournalen_US
article.title.sourcetitleFinite Fields and their Applicationsen_US
article.volume45en_US
article.stream.affiliationsTon-Duc-Thang Universityen_US
article.stream.affiliationsKent State Universityen_US
article.stream.affiliationsMahidol Universityen_US
article.stream.affiliationsUniversity of Economics and Business Administrationen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.