Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/57133
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Weizhong Tian | en_US |
dc.contributor.author | Guodong Han | en_US |
dc.contributor.author | Tonghui Wang | en_US |
dc.contributor.author | Varith Pipitpojanakarn | en_US |
dc.date.accessioned | 2018-09-05T03:35:20Z | - |
dc.date.available | 2018-09-05T03:35:20Z | - |
dc.date.issued | 2017-02-01 | en_US |
dc.identifier.issn | 1860949X | en_US |
dc.identifier.other | 2-s2.0-85012928638 | en_US |
dc.identifier.other | 10.1007/978-3-319-50742-2_14 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85012928638&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/57133 | - |
dc.description.abstract | © Springer International Publishing AG 2017. In this paper, the class of multivariate skew slash distributions under different type of setting is introduced and its density function is discussed. A procedure to obtain the Maximum Likelihood estimators for this family is studied. In addition, the Maximum Likelihood estimators for the mixture model based on this family are discussed. For illustration of the main results, we use the actual data coming from the Inner Mongolia Academy of Agriculture and Animal Husbandry Research Station to show the performance of the proposed algorithm. | en_US |
dc.subject | Computer Science | en_US |
dc.title | EM estimation for multivariate skew slash distribution | en_US |
dc.type | Book Series | en_US |
article.title.sourcetitle | Studies in Computational Intelligence | en_US |
article.volume | 692 | en_US |
article.stream.affiliations | Eastern New Mexico University | en_US |
article.stream.affiliations | Neimenggu Agricultural University | en_US |
article.stream.affiliations | New Mexico State University Las Cruces | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.