Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/57124
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | P. Tibprasorn | en_US |
dc.contributor.author | K. Autchariyapanitkul | en_US |
dc.contributor.author | S. Sriboonchitta | en_US |
dc.date.accessioned | 2018-09-05T03:35:16Z | - |
dc.date.available | 2018-09-05T03:35:16Z | - |
dc.date.issued | 2017-02-01 | en_US |
dc.identifier.issn | 1860949X | en_US |
dc.identifier.other | 2-s2.0-85012887682 | en_US |
dc.identifier.other | 10.1007/978-3-319-50742-2_35 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85012887682&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/57124 | - |
dc.description.abstract | © Springer International Publishing AG 2017. This study applies the principle of stochastic frontier model (SFM) to calculate the optimal frontier of the stock prices in a stock market. We use copula to measure dependence between the error terms in SFM by examining several stocks in Down Jones industrial. The results show that our modified stochastic frontier model is more applicable for financial econometrics. Finally, we use AIC for model selection. | en_US |
dc.subject | Computer Science | en_US |
dc.title | Stochastic frontier model in financial econometrics: A copula-based approach | en_US |
dc.type | Book Series | en_US |
article.title.sourcetitle | Studies in Computational Intelligence | en_US |
article.volume | 692 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
article.stream.affiliations | Maejo University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.