Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/57110
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSongsak Sriboochittaen_US
dc.contributor.authorWoraphon Yamakaen_US
dc.contributor.authorParavee Maneejuken_US
dc.contributor.authorPathairat Pastpipatkulen_US
dc.date.accessioned2018-09-05T03:35:08Z-
dc.date.available2018-09-05T03:35:08Z-
dc.date.issued2017-02-01en_US
dc.identifier.issn1860949Xen_US
dc.identifier.other2-s2.0-85012919655en_US
dc.identifier.other10.1007/978-3-319-50742-2_20en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85012919655&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/57110-
dc.description.abstract© Springer International Publishing AG 2017. The limited data will bring about an underdetermined, or ill-posed problem for the observed data, or for regressions using small data set with limited data and the traditional estimation techniques are difficult to obtain the optimal solution. Thus the approach of Generalized Maximum Entropy (GME) is proposed in this study and applied it to estimate the kink regression model under the limited information situation. To the best of our knowledge, the estimation of kink regression model using GME has been not done yet. Hence, we extend the entropy linear regression to non-linear kink regression by modifying the objective and constraint functions under the context of GME. We use both Monte Carlo simulation and real data study to evaluate the performance of our estimation from Kink regression and found that GME estimator performs slightly better compared to the traditional Least squares and Maximum likelihood estimators.en_US
dc.subjectComputer Scienceen_US
dc.titleA generalized information theoretical approach to non-linear time series modelen_US
dc.typeBook Seriesen_US
article.title.sourcetitleStudies in Computational Intelligenceen_US
article.volume692en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.