Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/57100
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChumphol Bunkhumpornpaten_US
dc.contributor.authorKrung Sinapiromsaranen_US
dc.date.accessioned2018-09-05T03:35:03Z-
dc.date.available2018-09-05T03:35:03Z-
dc.date.issued2017-03-01en_US
dc.identifier.issn02193116en_US
dc.identifier.issn02191377en_US
dc.identifier.other2-s2.0-84970990065en_US
dc.identifier.other10.1007/s10115-016-0957-5en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84970990065&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/57100-
dc.description.abstract© 2016, Springer-Verlag London. Class imbalance is a challenging problem that demonstrates the unsatisfactory classification performance of a minority class. A trivial classifier is biased toward minority instances because of their tiny fraction. In this paper, our density function is defined as the distance along the shortest path between each majority instance and a minority-cluster pseudo-centroid in an underlying cluster graph. A short path implies highly overlapping dense minority instances. In contrast, a long path indicates a sparsity of instances. A new under-sampling algorithm is proposed to eliminate majority instances with low distances because these instances are insignificant and obscure the classification boundary in the overlapping region. The results show predictive improvements on a minority class from various classifiers on different UCI datasets.en_US
dc.subjectComputer Scienceen_US
dc.titleDBMUTE: density-based majority under-sampling techniqueen_US
dc.typeJournalen_US
article.title.sourcetitleKnowledge and Information Systemsen_US
article.volume50en_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsChulalongkorn Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.