Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/56899
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | D. Cantor | en_US |
dc.contributor.author | E. Azéma | en_US |
dc.contributor.author | P. Sornay | en_US |
dc.contributor.author | F. Radjai | en_US |
dc.date.accessioned | 2018-09-05T03:31:42Z | - |
dc.date.available | 2018-09-05T03:31:42Z | - |
dc.date.issued | 2017-10-01 | en_US |
dc.identifier.issn | 21964386 | en_US |
dc.identifier.issn | 21964378 | en_US |
dc.identifier.other | 2-s2.0-85029918946 | en_US |
dc.identifier.other | 10.1007/s40571-016-0129-0 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85029918946&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/56899 | - |
dc.description.abstract | © 2016, OWZ. We present a three-dimensional numerical method for the simulation of particle crushing in 3D. This model is capable of producing irregular angular fragments upon particle fragmentation while conserving the total volume. The particle is modeled as a cluster of rigid polyhedral cells generated by a Voronoi tessellation. The cells are bonded along their faces by a cohesive Tresca law with independent tensile and shear strengths and simulated by the contact dynamics method. Using this model, we analyze the mechanical response of a single particle subjected to diametral compression for varying number of cells, their degree of disorder, and intercell tensile and shear strength. In particular, we identify the functional dependence of particle strength on the intercell strengths. We find that two different regimes can be distinguished depending on whether intercell shear strength is below or above its tensile strength. In both regimes, we observe a power-law dependence of particle strength on both intercell strengths but with different exponents. The strong effect of intercell shear strength on the particle strength reflects an interlocking effect between cells. In fact, even at low tensile strength, the particle global strength can still considerably increase with intercell shear strength. We finally show that the Weibull statistics describes well the particle strength variability. | en_US |
dc.subject | Chemical Engineering | en_US |
dc.subject | Engineering | en_US |
dc.subject | Mathematics | en_US |
dc.title | Three-dimensional bonded-cell model for grain fragmentation | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Computational Particle Mechanics | en_US |
article.volume | 4 | en_US |
article.stream.affiliations | Laboratoire de Mecanique et Genie Civil, Universite de Montpellier | en_US |
article.stream.affiliations | CEA Cadarache | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
article.stream.affiliations | Massachusetts Institute of Technology | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.